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Note 

Equivalence and Singularities: 
An Application of Computer Algebra 

It is argued that, by computing a few scalar invariants, one may, in practical cases, obtain 
enough information about the equivalence problem, the Petrov type, and the physical inter- 
pretation of a metric through the characterization of its singularities. An interactive algorithm 
is developed and an application to the Harrison metrics described. In particular, one finds 
that, allowing for complex coordinate transformations. there are only two distinct Harrison 
type D metrics. 

Algebra systems suitable for general relativity calculations are becoming widely 
available [ 1, 21. Typically, given the metric tensor in a coordinate frame, these 
programs compute the Christoffel symbols, the components of the Riemann tensor, 
and their contractions. A few [ 2, 3 1 do the computations with respect to a moving 
frame. 

For someone more interested in general relativity than in symbolic computing, the 
basic question is how to use these powerful tools to obtain sensible new information 
about the solutions of Einstein’s equation. One much-studied 14-7) question is the 
computation of the Petrov type of a metric. One algorithm for this purpose will surely 
become a standard feature in any future relativity-oriented algebra system. Once a 
metric is Petrov classified, the next interesting questions are: 

(1) Is this metric related to one already studied? 

(2) What is the coordinate independent physical content of the metric? 

(3) Is there a coordinate system where the physical content is transparent and 
further detailed study can be carried out? 

We will be primarily concerned in this paper with questions (1) and (2). For a 
discussion of the problems involved when tackling question (3), see [ 8 1. 

Question (1) carries the general name of the equivalence problem. From a theorem 
of Cartan [ 91, one knows that for each Riemannian manifold there is a number p 
such that another Riemannian manifold of the same dimension is locally equivalent 
to it iff there is a choice of tetrad basis that equals their Riemann tensor components 
together with those of the first p covariant derivatives. Then p is the smallest integer 
for which the covariant pth derivative can be written as a function of lower order 
covariant derivatives. The nature of the equivalence procedure following from this 
theorem has been discussed by Brans [lo], and there is a recent computer implemen- 
tation by Karlhede and Aman [ 111. The procedure contains a nonalgorithmic step, 
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where one must look for a solution to the algebraic relations obtained by equating the 
two independent sets of coordinate invariant tetrad components. 

Actually, the essence of the equivalence problem is to find the change of coor- 
dinates x=f(x) that maps one metric into the other or to prove that no such function 
can exist. For this purpose it may not be necessary to obtain the complete invariant 
characterization of the geometry of both spaces as in the Cartan-inspired procedures. 
Realizing this simple fact and recalling past attempts to formulate the equivalence 
problem through the scalar invariants [ 121, we were led to propose a step-by-step 
procedure where 

(a) At first a few scalar invariants of lowest order are computed for both 
metrics; 

(b) One checks whether the algebraic relations obtained by equating the 
invariants are incompatible. If they are, the metrics are not equivalent and the 
procedure steps. Otherwise, 

(c) One uses the algebraic relations to change coordinates as much as possible 
in one of the metrics. If the set of algebraic relations is not complete, one tries to 
guess the remaining coordinate changes needed to prove equivalence. If this fails one 
goes to (a) and computes some more invariants. 

The steps (b) and (c) have the same nonalgorithmic nature as the last step in the 
Karlhede-Aman procedure. To our surprise, in the cases tested we have not had to 
compute invariants involving more than one covariant derivative of the Riemann 
tensor. Also, we found that in some cases the partial change of variables implied by 
an incomplete set of algebraic relations reduces the problem to an equivalence 
problem in lower dimensions. 

In general relativity, two metrics are physically equivalent when there exists a real 
coordinate transformation between them. When two real metrics are related only by a 
complex coordinate transformation (i.e., when they are analytic continuations of each 
other), although nonequivalent, their main features are closely related. Therefore in 
the applications of our method we look also for complex coordinate transformations 
and denote this relation by C-equivalence. 

That the scalar invariants seem to be a handy tool for the equivalence problem is a 
fortunate circumstance because they are also the natural tool to classify spacetime 
singularities. Namely, a singularity is scalar if some polynomial in RPL,n4 is ill 
behaved and C” nonscalar if polynomials in RuL,aBGo,.,,,,ok(k ,< n) are well behaved 
] 131. In this way, with the same computation one extracts information about the 
equivalence problem and the singularities; knowledge of the singularities is one the 
most important items in identifying the physical content of the metric (question 2). In 
this connection, it is important to be able to carry out the calculations until reaching, 
at least, polynomials in RruaBto because they are expected to blow up at an inter- 
mediate singularity [ 14 ]. 

Although the popular algorithms to compute the Petrov type of a metric use the 
Newman-Penrose spin coefficient formalism, Harris and Zund [ 71 have noticed that 
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the classification of the metric may be obtained by checking certain algebraic 
relations between the scalar invariants. Therefore a Petrov type identifying capability 
may also be implemented in the same algorithm. 

To close this introduction, one should mention that another computer algebra 
related problem that might be worthwhile to look at, and that has not so far attracted 
much attention [ 15 ], is 

(4) Can one use computer algebra to generate new solutions to Einstein’s 
equation? 

Eventually, this may be better served by the new predicative logic based languages 
than by the traditional list or string processing symbolic languages. 

Two algorithms to implement our program were written on top of a REDUCE 
] 16) system implemented on a DEC-10. One of the algorithms is devised for general 
metrics and the other is specialized to diagonal metrics with the scalar invariants 
written out explicitly as program lines to save time by avoiding all contraction loops. 

Both algorithms contain three blocks. The first one uses the standard routines to 
compute, given a metric, the Riemann, Ricci, and Weyl tensor. The second block 
converts the tensors to dyadic form and computes the scalar invariants of the first 
kind (those involving only the Riemann and metric tensors). Of the 14 scalar 
invariants of the first kind, we list the pure Weyl ones: (For vacuum metrics the 
remaining 10 vanish) 

This second block also checks the validity or nonvalidity of the relations 

(Z”‘/48)3 - 12(Z”J/48)(Z’3’/192)2 = (Z’2’/96)2 - (Z’4’/192)2, 

6(Z”‘/48)2 (Z’3’/192) - 8(Z’3’/192)3 = 2(Z’2’/96)(Z’4’/192), 

which hold for Petrov type D metrics. Finally the third block computes invariants 
that involve one covariant derivative of the Riemann tensor. 

The polynomal factorization capabilities of REDUCE are very appropriate to 
obtain simple denominators in the invariants, thus providing information on 
singularities and change of variables even when the numerators are unmanageably 
long. 

Interactive use of the programs is always advisable to decide when to introduce a 
simplification, whether an expression should or should not be expanded, etc. 

We have tested our programs by carrying out a study of the Harrison metrics [ 17 ]. 
By transforming them to Kinnersley’s form, d’Inverno and Russel-Clark [4] have 
reduced the 14 Harrison type D metrics to the following eight equivalence classes: 

[III-~, 111-4(a), 111-4(b)]; [III-2, 111-3, 111-12(c)]; [III-g]; [III-i’(a), 111-7(b), III- 
7(c)]; [III-s(a)]; [111-9(b)]; [III-g(c)]; [III-lo]. 
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Aman and Karlhede [18] have recently found that the metrics 111-9(a), 111-9(b) and 
111-9(c) are equivalent, thus reducing the number of equivalence classes to six. Using 
our method and allowing for complex coordinate transformations, we found that there 
are only two distinct Harrison type D metrics, the G-equivalent classes being: 

IIII-10, 111-7(a), 111-7(b), 111-7(c), 111-8, 111-9(a), 111-9(b), 111-9(c)], 
[III- 1, 111-2, 111-3, 111-4(a), 111-4(b), III- 12(c)] 

We list in the Appendix the changes of coordinates that transform each metric into 
either III-IO or III-l. We denote by x” the coordinates of III-IO or 111-l and by ?c“ 
the coordinates of the metric to be transformed. 

It should be mentioned that the trivial transformations taking 111-7(a)), 111-9(a), 
and III-8 into III-IO were used by Harrison himself [ 171 to generate two of these 
metrics. 

Metric III-IO is the Schwarzschild metric, and 111-l a NUT metric (with 
p,, = p,, = 0). Hence all Harrison D metrics are equivalent to one of these or to an 
analytic continuation thereof. Equivalently, we might state that are all contained in 
the analytic continuations of the 1V.B Kinnersley class (with C = 0 or C = +). 

All this information was actually obtained by computing just the I(‘) and I’*’ 
invariants, with It3’ and Zc4’ being zero because the Harrison metrics are independent 
of one of the coordinates. For the two independent metrics we have 

I”’ ,,,.lo = 192((x3)* - Z2)6/1’6, 1’2’ ,,Im,o = 768((x”)* - 12)9/124, 

z(l) - 1 21*/(x0)6, 111-I - 
1’2’ ,,,-, = -121”/(xO)Y. 

To show that these metrics are inequivalent it sufficed to compute 
K”’ = R”h&“R 

a5YS:P 

K;;;- ,. = (11520(x3)2/124)((x3)2 - 12)8, 
K”’ ,,1-, = -1801-‘/(~~)~. 

which cannot hold if If 1;: 
To have both Zii\_,, =I,,iP, and Ki:,‘_,, = K’,:i-, would require (x’)’ - 1’ = (x’)I 

The scalar singularities of the metrics can be read from the invariants and 
correspond in III-10 to x3 + co (r -+ 0 in Schwarzschild coordinates) and x0 + 0 in 
111-l. 

We have also computed the scalar invariants I”’ and I’*’ for all Harrison type I 
vacuum metrics. (Following the tradition of not publishing results longer than one 
output page, we list below only two of the simplest ones, but will be glad to supply 
the others to anyone interested.) 

pII 
III-11 

= (31’/4(~‘)~ (x’)’ sin7(x3/1) A”) 

x { 2 1 (x0)’ A4 - 24x0(x’)“* (sin”‘(x’/f)) [“*A2 + 16x’l sin x3/l), 
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1’2’ 
111~11 

= (3Z21’2/16(xo)9 (x1)“” sin2”*(x3/l) A”) 

X {81(~‘)~ A6 - 180(~‘)~ (x1)‘/* sin’/*(x3/1) 1’j2A4 

+ 144x0x1 sin(x3/l) 0.’ - 64(.~‘)~‘* sin3/*(x3/l) 13/*}, 

I(l) 
I-B ~ l(a) 

= (~~Z”/F’[(X~)~ - (x’)~]~)([x’ - x’]/[x” +x1])*= 

x {(x0)” F2(7F2 - 3) - 94x0)3 x’F2(F2 - 1) 

+ 2(x0)* (xl)’ (3F4 - 10F2 + 3) 

+ 9ax0(x’)3 (F2 - 1) + (xi)4 (7 - 3F2)}, 

p 
I-B-l(a) 

= (9616/sinh3(2x3/l)[(x0)2 - (x’)*]~)([x~ - x’]/[x” + ~~1)~~ 

x {am (5F6 - 3F4) + a(~“)’ x1(-19F4 + 18F2 - 15) 

+ am (xl)’ (4F6 - 7F4 + 9F2) + I”’ (-5F6 + 39F4 - 39F2 + 5) 

+ 6(x0)* (x1)” (-9F4 + 7F2 - 4) 

+ AXIS (15F4 - 18F2 + 19) + 2(~‘)~ (3F2 - 5)}, 

where F = sinh(2x3/1) and cr = +$z 
Preliminary work with these type I metrics led to the identification of the following 

C-equivalence classes: 

[11-A-4, 11-A-5, 11-B-2, 11-C-31; [11-A-2, II-B-l, 11-C-2, 11-A-31; [11-A-6, 11-C-4, II-B- 
3, 11-A-71; [III-11, 111-12(a), 111-12(b)]; [II-A-l, II-C-l]; (I-B-3, I-B-41; [III-51; [I-B- 

Wl. 

This grouping explored only the simplest invariant identifications and we believe a 
much greater reduction in the number of distinct types is possible. 

APPENDIX 

First Group (C-equivalent to III-lo) 

111-7(a): x0 = iZ*, x1 = ix’, x2 = iZ”, x3 z 23, 1=1. 

111-7(b): x0 = if2, x1 =x1, x2 = -ix0 + $nc x3 =x3, l= 1 

111-7(c): x0 = X2, x1 = ftcot-‘i{ (1;/4X’) c-2S’T + ((-3B4x’) + (xi/l)) ezxa”), 

x2 = +[cosh-‘{+e-2x”/7+ +29/T + (2(f’)‘/t5) ,7, x3 = 23, I=11 
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111-g: x0 = ,f*, ,y’ = j’, x2 = if’, x3 = x3, I= il. 

111-9(a): x0 = 6’, x’ = iY’, x2 = X2, x3=X3, l=-iI 

III-g(b): x0 =X0, x1 = f’, x2 = - ai& X2, x3 =X3, I= - iI 

111-9(c): x0 = i?‘, x’ = +iTcot-‘{(1;4Y’) eP2’2’7- ((31;4X’) + (.?‘/T)) e2”2’T}, 

.y* = jifcosh-’ ( qe-2rZ’T + (i + 2(f’)*/p) ,*3/T}, x3 = x3, / = ii 

Second Group (C-equivalent to III- 1) 

111.2. xO = -/1*/3&~+~ 3 x’ = i(e”‘)l* + (p/2n”l’)f’ + ~2/3&‘~!*‘+~), 

x* = iJ. l/3&3, x3 = +“a/* + (p/21”/“) 2’ + ~2/3~e'?o/2' t yz, / = [ 

111.3 : x0 = -4 ‘/3[((x’/r) sin x3/[) ‘I*, x’ = 4 - “ji,fO, 

x2 = 2”3il((X’/ij cos /?‘/I), x3 = 4 - “3x2, I = r. 

111-4(a): x0 = -4”“l((X”/Z) sinh X3/1)‘/*, x’ = 4-“3X’, 

x2 = 2 ““~((~“/f) cash X3/1), x3 = 4 - “3xz, I= r. 

111-4(b): x0 = 4”‘Q(Z”/l) cash X3/l)“*, x’ = 4p”3x’, 

x2 = 2 “‘l((.?“/f) sinh X3/1), x3 = 4 “3X2, I = 1 

111-12(c): x0 = - (p/l) ,fo&y 

x I = i(XO’IZex’12T + (il/2/2k4/3) xOe -.?/I + k2/3xle-p/21), 

x* = ik '/3X* 
3 

x3 = _ ~0’/2~F’/2T + (i’/‘/2k”/“) ff~e-“‘/T + k?/“&.?fZT, 1 = 1. 
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